Wilson Disease Protein ATP7B Utilizes Lysosomal Exocytosis to Maintain Copper Homeostasis
نویسندگان
چکیده
Copper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we show that, in response to elevated copper, ATP7B moves from the Golgi to lysosomes and imports metal into their lumen. ATP7B enables lysosomes to undergo exocytosis through the interaction with p62 subunit of dynactin that allows lysosome translocation toward the canalicular pole of hepatocytes. Activation of lysosomal exocytosis stimulates copper clearance from the hepatocytes and rescues the most frequent Wilson-disease-causing ATP7B mutant to the appropriate functional site. Our findings indicate that lysosomes serve as an important intermediate in ATP7B trafficking, whereas lysosomal exocytosis operates as an integral process in copper excretion and hence can be targeted for therapeutic approaches to combat Wilson disease.
منابع مشابه
The copper-transporting ATPases, menkes and wilson disease proteins, have distinct roles in adult and developing cerebellum.
Copper is essential for brain metabolism, serving as a cofactor to superoxide dismutase, dopamine-beta-hydroxylase, amyloid precursor protein, ceruloplasmin, and other proteins required for normal brain function. The copper-transporting ATPases ATP7A and ATP7B play a central role in distribution of copper in the central nervous system; genetic mutations in ATP7A and ATP7B lead to severe neurode...
متن کاملCritical roles for the COOH terminus of the Cu-ATPase ATP7B in protein stability, trans-Golgi network retention, copper sensing, and retrograde trafficking.
ATP7A and ATP7B are copper-transporting P-type ATPases that are essential to eukaryotic copper homeostasis and must traffic between intracellular compartments to carry out their functions. Previously, we identified a nine-amino acid sequence (F37-E45) in the NH(2) terminus of ATP7B that is required to retain the protein in the Golgi when copper levels are low and target it apically in polarized...
متن کاملMolecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes.
The trace metal copper is essential for a variety of biological processes, but extremely toxic when present in excessive amounts. Therefore, concentrations of this metal in the body are kept under tight control. Central regulators of cellular copper metabolism are the copper-transporting P-type ATPases ATP7A and ATP7B. Mutations in ATP7A or ATP7B disrupt the homeostatic copper balance, resultin...
متن کاملMolecular Genetics Diagnosis of Wilson Disease: the First Reported Case of ATP7BGene Mutation at Codon 778 in Southwest Iran
Wilson disease is a metabolic disorder with an autosomal recessive genetic pattern and occurs in 1-4 of every 100000 individuals. Inactivation of the ATP7B gene leads to accumulation of the toxic copper to liver and brain causing hepatic and neurological complication. Therefore, most patients suffer from chronic hepatic inflammation and central nervous system disorder. Nowadays, up to ...
متن کاملMetal binding domains 3 and 4 of the Wilson disease protein: solution structure and interaction with the copper(I) chaperone HAH1.
The Wilson disease protein or ATP7B is a P 1B-type ATPase involved in human copper homeostasis. The extended N-terminus of ATP7B protrudes into the cytosol and contains six Cu(I) binding domains. This report presents the NMR structure of the polypeptide consisting of soluble Cu(I) binding domains 3 and 4. The two domains exhibit ferredoxin-like folds, are linked by a flexible loop, and act inde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 29 شماره
صفحات -
تاریخ انتشار 2014